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Course syllabus: ChE-402

Instructors
Prof. Kumar Varoon Agrawal 2D films for molecular and ionic separation
Dr. Marina Micari Design and optimization of separation processes

Teaching Assistants

Shaoyu Wang Synthesis of porous two 2D materials for selective diffusion of gases

Jiaming Tian Synthesis of high-temperature catalyst for electrolysis



Intended learning outcome

1. Analyze Fick's law of diffusion from molecular hopping point of view.
2. Understand the limits of Fick's law of diffusion.

3. Analyze the origin of diffusion.

4. Inspect diffusion from a single particle perspective (Brownian motion).

5. Inspect diffusion from Einstein's perspective (chemical potential gradient).



Time scale of diffusion
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Calculate the time scale of diffusion in these systems « ,

D (m’s™) L (nm) LA2 (m?) t (s)
gases 1.0E-05 50 | |

liquid 1.0E-09 1

solid (fast diffusion) 1.0E-14 0.3

solid (slow diffusion) 1.0E-20 0.3 i i
solid (extremely slow diffusion) 1.0E-30 0.3 Defects in solid
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Why should you learn about diffusion and
mass transfer?
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Some common examples

Fluid-fluid interface

® Distillation
® Bioreactors
B8 Humidifiers

B Absorbers

Typical design questions for engineers:
® What is the needed height of contact to reach close to equilibrium?
® What is the role of droplet size?
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Some common examples

Fluid-solid interface

O
o O ® Membranes
O :
B Adsorption
? 0000 ¢ |
o ® _eaching
O O O o ® Reaction in porous catalyst
O :
o O 8 Corrosion

Typical design questions for engineers:

® How fast a fluid can move inside the solid. i i
® What is the role of porosity in solid. diffusion
® What is the role of temperature, pressure, etc.
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Governed by fundamental transport property



Thomas Graham (1805 - 1869)
Gas diffusion experiments:

%./ Stucco plug

.— Glass tube
Can you guess what happens to water level in this experiment?

I+ Diffusing gas

__— Water

Graham’s conclusion

Rate of gas diffusion proportional to/ MW
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Thomas Graham (1805 - 1869)
Liquid diffusion experiments:

Low
concentration

N\/WAN

Low
concentration

concentration

High Experiment 2
concentration

Experiment 1

Graham’s conclusion

Quantity of diffused material is proportional to quantity of material in the vial.
Diffusion in liquids is several orders of magnitude smaller than that in gas.
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Adolt Fick (1829 - 1901)

Postulated an analogy to the Fourier’s Law for heat conduction or Ohm’s law for electrical conduction

“The diffusion of the dissolved material ... is left completely to the influence of the molecular forces basic to
the same law ... for the spreading of warmth in a conductor and which has already been applied with such
great success to the spreading of electricity”

Flux
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First Law

oc
J=—D—
07

Why there is a negative sign?

Second Law

Rate of accumulation

oc oJ

o oz

-Ick’s first and second law

Why there is a negative sign?
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-1ck’s second law: derivation

Consider a one-dimensional system

N; = Number of particles at 1

number of jump

[' = Jump frequency = .
time

Each particle can jump left or right with frequency I

Flux of particles out of spot1 = I'N,

=Pi-L
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-Ick’s second law: derivation

0 i—2 i— i+2

F Ji—l/2 Ji+1/2

Flux of particles out of spoti = I'N,

Concentration changes at the position

ON(i, 1) —J I is dictated by these two fluxes
ot = Jioip = Jin

For positive flux, J,_;,, > Ji.(»
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-Ick’s second law: derivation

X—d
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X
For small hops
2
. N(x—a,t) — 2N(x,t) + N(x +a,?) _ 0°N(x,1)
= lim = )

a—0 612

r ON Fa 0*N(x, 1) 0>N(x, 1)
= lim —(N_, — 2N. + N.,;) = — = _ :
a—0 2( —1 l l+1) ot @ ox? D Ox2

2
ON _ DaN(X,t) FaZ

E_ Ox2 D =
x =PFL 2 .

Fick’s 2nd Jaw



Diffusion In three-dimensions

TCa?
For 1 dimensional system : D = >

. . . TCa?

For 2 dimensional system (square lattice) : D = ——
4

. . . . Ca?

For 3 dimensional system (cubic lattice) : D = ——
6

What is the dimension of diffusion coefficient?

=Pi-L
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Exercise problems on flux

=PiL
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—Xercise problem oc

J —_ Da—
A gas is diffusing from left (z= 0) to right (z= 1) with flux Jo. The initial <
concentration on left is Co, and on the right is C..
What will happen to flux if both C, and C, are doubled?
CO
A. Jnew — Jo C
[
B. Jnew = 2J o e
C. Jnew — 05 Jo >
=0 z=1
D. Jnew — 4 Jo )
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-Xercise problem:

A gas is diffusing from left (z= 0) to right (z= 1) with flux Jo. The initial
concentration on left is Co, and on the right is C..

What will happen to flux if the distance / is cut short to half?
....... ..
A. Jnew — Jo | R Cl .......
B. Jnew — 2Jo .
C. unewzo.5 Jo z2=0 z=1
D. Jnew — 4 Jo




Diffusion will stop even It the concentration
gradient is not zero?

Diffusion coefficient near consolute points
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temperature
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E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems h



Limitation of Fick’s laws of diffusion

Diffusion is driven by concentration gradient

Diffusion is macroscopic manifestation of the tendency to reach
equilibrium, therefore, it must be driven by chemical potential gradient

=PFL

20



Understanding the driving force for diffusion

® Diffusive flux is essentially a flow driven by force (the gradient of chemical potential).

® If there is a flow, there should be frictional force opposing the flow.

_ | . High \J\ Low
rictional drag = chemical potential force concentration For kg { concentration
u
d 1d
fu =-— d_’: > u =- ?d_lzl Friction, f
d d In(f/P)
¢ du A L kT
flux = uc = _?d_z u = u°(T,P) + kgT In(f/P) d dz B dz
© fux = :_ckBlen(f/P) _ ckgT dIn(fIP)dInc _ [kBlen(f"/P)] de  __pdc
[ dz f dz  f dlnc dz f dlnc | dz dz

_ kTdIn(iP) _  din(frP) _ kT
" f dlnc  ° dlnc /

Diffusivity is inversely proportional to frictional force

Stoke’s Einstein Equation
21



Understanding the driving force for diffusion

_h d In(f/P) o
BRCEPTY Transport diffusivity
kT
Do =~ Self-diffusivity or tracer diffusivity

This difference is reflected when one deals with
® \Where non-ideal behavior kicks in (e.g., hexane/nitrobenzene).
® Multicomponent systems

D x 107, cm?2/sec
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Origin of diffusion (molecular perspective):
Brownian motion
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Source: wiki

Brownian motion (single-particle perspective)

1 2
P(z,t) = exp < < )
\/ 47TDOt 41)02L

Point spread probability

If you observe a single particle (tracer) as a function of time

=PFL
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Making sense of two fundamental concepts:
Fick’'s l[aw and random motion

Fick’s first law (collective motion) 4 Concentration profile
D D dc(x, 1)
X, [) = —
ox c2)

Brownian motion (single-particle perspective)

1 _ 2
P(z,t) = exp < < )
\/ 47TD0t 4D0t

Point spread probability
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Making sense of Fick's law and random motion

c(z,0) = Aapt =0) exp( rrs ) c(z,0) = eyt =) exp( o >

\/4rD,t
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Making sense of Fick's law and random motion

Spread from left to right is dominant

c(2) '\ \‘\ Fiok's law

=Pi-L 2



Diffusion as a random walk: Brownian motion

Brownian motion is diffusion under macroscopic equilibrium

oc’ Self-diffusivity flux under slight

0Z fluctuation in concentration
c=const

J'=-9

Measurement of self-diffusivity

For 3 dimensional system (cubic lattice) : D,

1
Mean-squared displacement of N particles at time t = (r*(1)) = NZJIV (x(t) — x(0))*> = 6Dt
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https://www.youtube.com/watch?v=4m5JnJBq2AU

Mean square displacement profile can be a
signature for type of diffusion

Fickian diffusion

(Z2()) = 2Dyt (2()) o t

Single-file diffusion

2D(0)t
zl’

(Z0) =

Single-file-diffusion is much slower than that of Fickian

=Pi-L "



N class exercise 1

Let's look at one-dimensional space divided across several hopping sites.

Initially there are no particles.
At time t = 0, you place 10000 particles at 0.
Calculate number of particles at 0, -a and a, -2a and 2a after 1 s.

['=100 hop/s a2
a = 1 length unit D = >

W
| —z2) NG, ©) = exp( .
P(z, 1) = e :
(2,1 Y xp<4 D \/4zD t 4Dt
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N class exercise #2

Continuation of previous problem:

Initially there are no particles.

At time t = 0, you place 100000 particles at 0 and 10000 particles at 2a to make a negative
concentration gradient along the x-direction.

Calculate the direction of particle flow at the position a (midway between 0 and 2a) after 1 s.
Calculate the net directional flow of particle (from left to right) at the position a after 1s.

—2a —a 0 a 2a
I'=100 hop/ la®
op S. D = No(t =0, Zo) _Z2
a = 1 length unit 2 N(z,») = exp
\/471'D0t 4Dot



INn class exercise #3: self-diffusion

A gas molecule, He, is diffusing in a one dimensional channel, 1 ym away from the end of channel.
Assuming the diffusion coefficient, Do, to be 10-8 cm?2 s-1, calculate the time that it take He to reach the
end of channel.

<r2(t)> = 2D, For 1D diffusion



